A minimal model for explaining the higher ATP production in the Warburg effect
نویسندگان
چکیده
For producing ATP, tumor cells rely on glycolysis leading to lactate to about the same extent as on respiration. Thus, they use a higher fraction of glycolysis than the corresponding healthy cells. This is known as the Warburg effect (named after German biochemist Otto Warburg) and also applies to striated muscle cells, activated lymphocytes and microglia, endothelial cells and several other cell types. This effect is paradoxical at first sight because the ATP yield of glycolysis is much lower than that of respiration. Although a straightforward explanation is that glycolysis allows a higher ATP production rate, the question arises why the cell does not re-allocate protein to the high-yield pathway of respiration. We tackle this question by a minimal model only including three combined reactions. We consider the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which not only the rates but also the maximal velocities are variable. Depending on side conditions and on protein costs, this leads to pure respiration, pure glycolysis, and respirofermentation as a mixed flux distribution.
منابع مشابه
Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production.
For producing ATP, tumour cells rely on glycolysis leading to lactate to about the same extent as on respiration. Thus, the ATP synthesis flux from glycolysis is considerably higher than in the corresponding healthy cells. This is known as the Warburg effect (named after German biochemist Otto H. Warburg) and also applies to striated muscle cells, activated lymphocytes, microglia, endothelial c...
متن کاملHuman Fibroblast Switches to Anaerobic Metabolic Pathway in Response to Serum Starvation: A Mimic of Warburg Effect
Fibroblasts could be considered as connective tissue cells that are morphologically heterogeneous with diverse functions depending on their location and activity. These cells play critical role in health and disease such as cancer and wound by Production of collagen, fibronectin, cytokines and growth factors. Absence of insulin and other growth factors in serum deprivation condition and similar...
متن کاملLinear programming model can explain respiration of fermentation products
Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy sou...
متن کاملExplaining Heterogeneity in Risk Preferences Using a Finite Mixture Model
This paper studies the effect of the space (distance) between lotteries' outcomes on risk-taking behavior and the shape of estimated utility and probability weighting functions. Previously investigated experimental data shows a significant space effect in the gain domain. As compared to low spaced lotteries, high spaced lotteries are associated with higher risk aversion for high probabilities o...
متن کاملGenome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect
The Warburg effect--a classical hallmark of cancer metabolism--is a counter-intuitive phenomenon in which rapidly proliferating cancer cells resort to inefficient ATP production via glycolysis leading to lactate secretion, instead of relying primarily on more efficient energy production through mitochondrial oxidative phosphorylation, as most normal cells do. The causes for the Warburg effect h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PeerJ PrePrints
دوره 3 شماره
صفحات -
تاریخ انتشار 2015